Realizing Finite Groups in Euclidean Space
نویسندگان
چکیده
منابع مشابه
Realizing Finite Groups in Euclidean Space
A set of points W in Euclidean space is said to realize the finite group G if the isometry group of W is isomorphic to G. We show that every finite group G can be realized by a finite subset of some R n, with n < |G|. The minimum dimension of a Euclidean space in which G can be realized is called its isometry dimension. We discuss the isometry dimension of small groups and offer a number of ope...
متن کاملOn the Quaternionic Curves in the Semi-Euclidean Space E_4_2
In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.
متن کاملAntipodality properties of finite sets in Euclidean space
This is a survey of known results and still open problems on antipodal properties of finite sets in Euclidean space. The exposition follows historical lines and takes into consideration both metric and affine aspects. © 2004 Elsevier B.V. All rights reserved.
متن کاملCharacterizations of Slant Ruled Surfaces in the Euclidean 3-space
In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2000
ISSN: 0021-8693
DOI: 10.1006/jabr.1999.8189